Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 165

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Revision of the criticality safety handbook in light of the reality of the nuclear fuel cycle in Japan; With a view to transportation and storage of fuel debris

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai

Proceedings of 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM22) (Internet), 5 Pages, 2023/06

Since the 1990s, the importance of the handbook has changed significantly, as the computational power has improved and continuous energy Monte Carlo codes have become widely used, which enables highly accurate criticality calculations, when necessary, irrespective of the complexity of the system. Because the value of performing a large number of calculations in advance and summarizing the data has decreased, since the second edition was published publicly in 1999, there has been no revision of criticality safety handbooks in Japan for nearly a quarter of a century. In Japan, where the Fukushima Daiichi Nuclear Power Plant accident occurred in 2011, it became necessary to deal with criticality safety issues in the transport and storage of the fuel debris which contains complex constituent elements, and the summary the criticality safety management for such material is an urgent issue. In the area of burnup credit, the transport and storage of fuel assemblies with low achieved burnups due to the consequences of accidents might be the problem. In addition, nuclear data, which is the input for the continuous energy Monte Carlo code, has been improved several times, now JENDL-5 is available from the end of 2021, and its incorporation becomes a need in the field. This report provides an overview of the latest criticality safety research in Japan and the planned revision of the Criticality Safety Handbook, which could be applied to the transport and storage sectors.

Journal Articles

Improvement effects of TiCl$$_{3}$$ on dehydrogenation of magnesium borohydride Mg(BH$$_{4}$$)$$_{2}$$

Li, H.-W.*; Matsumura, Daiju; Nishihata, Yasuo; Akiba, Etsuo*; Orimo, Shinichi*

Nihon Kinzoku Gakkai-Shi, 77(12), p.627 - 630, 2013/12

 Times Cited Count:4 Percentile:27.35(Metallurgy & Metallurgical Engineering)

no abstracts in English

Journal Articles

Tritium accounting stability of a ZrCo bed with "In-bed" gas flowing calorimetry

Hayashi, Takumi; Suzuki, Takumi; Yamada, Masayuki; Nishi, Masataka

Fusion Science and Technology, 48(1), p.317 - 323, 2005/07

 Times Cited Count:10 Percentile:56.65(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Complex compound of rare earth elements, Actinides

Saeki, Masakatsu

Dai-5-Han Jikken Kagaku Koza 22; Kinzoku Sakutai, Seni Kinzoku Kurasuta, p.200 - 209, 2004/03

no abstracts in English

Journal Articles

Present Status of Monte Carlo Seminar for Sub-criticality Safety Analysis in Japan

Sakurai, Kiyoshi; Nojiri, Ichiro*

JAERI-Conf 2003-019, p.855 - 857, 2003/10

This paper provides overview of sub-criticality safety analysis seminar (July 2000-July 2003, JAERI, total 40 engineers from universities, research institutes and enterprises) for nuclear fuel cycle facility with the Monte Carlo method in Japan. MCNP-4C2 system (MS-DOS version) was installed in each note-type personal computer. Fundamental theory of reactor physics and Monte Carlo simulation including MCNP-4C manual was lectured. Effective neutron multiplication factor and neutron spectrum were calculated for JCO deposit tank, JNC uranium solution storage tank, JNC plutonium solution storage tank and JAERI TCA core. In the seminar, methodology of safety management for nuclear fuel cycle facility was discussed in order to prevent criticality accident.

Journal Articles

General description and operational experience of a dry storage facility for JRR-3 spent fuels in JAERI

Kusunoki, Tsuyoshi; Koda, Nobuyuki; Uchiyama, Junzo*

Dai-24-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, p.149 - 156, 2003/00

A dry storage facility (DSF) was constructed in March 1982 to store the JRR-3 metallic natural uranium spent fuel elements those had been stayed under water in a core or a spent fuel pool for a long period (Maximum : about 20 years). The facility consists of a storage, an air circulation system, an auxiliary system and a control room. The storage is composed of the concrete shielding and 100 dry-wells. In each dry-well, a stainless steel made canister with the spent fuels is stored. The air circulation system has an air-inlet and outlet pipes, headers and air circulation blowers to circulate air in the system and maintain the pressure inside the dry-well below the atmosphere. This system also performs the role as radiation monitoring system. The facility is designed to satisfy safety requirements as a nuclear fuel facility, such as criticality safety, radiation shielding and earthquake performance. JAERI has successfully experienced the dry storage of 1798 spent fuel elements about for 20 years.

JAEA Reports

Utilization of actinide as cell active materials, JAERI's nuclear research promotion program, H10-034-1 (Contract research)

Shiokawa, Yoshinobu*; Yamamura, Tomoo*; Watanabe, Nobutaka*; Umekita, Satoshi*

JAERI-Tech 2002-017, 50 Pages, 2002/03

JAERI-Tech-2002-017.pdf:2.69MB

no abstracts in English

Journal Articles

A Process of spent nuclear fuel treatment with the interim storage of TRU by use of amidic extractants

Tachimori, Shoichi; Suzuki, Shinichi; Sasaki, Yuji

Nihon Genshiryoku Gakkai-Shi, 43(12), p.1235 - 1241, 2001/12

 Times Cited Count:29 Percentile:87.11(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Preparation of data relevant to "equivalent uniform burnup" and "equivalent initial enrichment" for burnup credit evaluation

Nomura, Yasushi; Murazaki, Minoru*; Okuno, Hiroshi

JAERI-Data/Code 2001-029, 120 Pages, 2001/11

JAERI-Data-Code-2001-029.pdf:6.16MB

no abstracts in English

JAEA Reports

JAEA Reports

Surveillance system for radiation monitoring in HTTR

Nakazawa, Takashi; Kikuchi, Hisaki; Yasu, Katsuji; Yoshino, Toshiaki; Ashikagaya, Yoshinobu; Sato, Koichi; Minowa, Yuji; Nomura, Toshibumi

JAERI-Tech 2001-010, 125 Pages, 2001/03

JAERI-Tech-2001-010.pdf:7.4MB

no abstracts in English

JAEA Reports

The Primary evaluation of the impacts of naturaI phenomena on the safety functions of the geological disposal system; An Example study on site generic phase

Makino, Hitoshi; ; Miyahara, Kaname

JNC TN8400 2000-033, 74 Pages, 2000/11

JNC-TN8400-2000-033.pdf:9.19MB

Natural phenomena is one of the potential factors perturbing the long-term stability of the geological environment, and for natural phenomena, it is necessary to consider uncertainties relevant to time, frequency and effect. Therefore it will be important to have information about the potential impacts of natural phenomena on the safety functions of geological disposal system in the future by assuming that natural phenomena perturbs the safety functions of the geological disposal system. In this report, we have considered 4 natural phenomena, 'uplift, subsidence and denudation', 'climatic and sea-level changes', 'earthquakes and fault movement' and 'volcanism', which had been extracted by investigation in foreign countries and by considering the characteristics of Japan as natural phenomena which may perturb the long-term stability of the geological environment. And we have considered mainly typical effects of naturaI phenomena on geological environment and investigated the typical impacts of those natural phenomena on the safety functions of the geological disposal system. On perturbation scenarios, the maximum of total doses have been less than regulatory guidelines in foreign countries in all situations except the cases assuming that a new fault, which causes significant pathway of groundwater flow and nuclide migration, intersects the waste packages. In the case, the maximum of total doses may reach the same level as regulatory guidelines in foreign countries or natural radiation exposure in Japan depending on fault generation time or grandwater flow rate through the fault. And, on isolation failure scenarios, it has been implied that nuclide mass/flux originated from geological disposal is comparable level with nuclide mass/flux in natural environment. These results could give useful information about the potential impacts of natural phenomena on the safety functions of geological disposal system, and also could show the potential importance of ...

JAEA Reports

Measures of closing report of outside waste storage pits separate volume part II; Data collections about measurement of contamination and measurement after decontamination in outside waste storage pits

; Sukegawa, Yasuhiro*; Suzuki, Satoshi*; Yoshida, Michihiro; ; *; Miyo, Hiroaki

JNC TN8440 2000-022, 180 Pages, 2000/10

JNC-TN8440-2000-022.pdf:12.16MB

At outside waste strage pits, containers for strage of wastes corroded and were flooded, and it was confirmed on August 26, 1997. Confirmation of contamination of the pits outskirts, installation of sheets to prevent rainwater from flowing into the pits, drawing stay water were executed, promptly. Design and authorization works of the work house and waste treatment devices to take out wastes of the pits were executed too. After construction of the work house, taking out wastes of the pits started, and finished on April 10, 1998. Investigations of the inflow point of rainwater and leak of stay water were executed next. The results were reported to Science and Technology Agency (STA), adjoining authorities on December 21, 1998. After decontamination of the pits inner walls to background level of the radioactivity which included general concrete, control area was removed, and the pits were closed by concrete. Measures of closing of the pits were prepared from the middle of August, 1999, and dismantlement of unnecessary instruments started. Decontamination of the pits started from the beginning of September, 1999. The above works finished on June 30, 2000. After decontamination of the pits, STA, adjoining authorities confirmed the dircumstances. Work pouring concrete into the pits was executed three times (three levels), and finished on August 31, 2000. In addition to above, the amount of concrete poured into the pits was about 1,200 m$$^{3}$$. These data compiled the inspection of contamination in measures of closing of the pits.

JAEA Reports

Measures of closing report of outside waste storage pits; Separate Volume Part I; Photographs sbout improvement step of outside waste storage pits

Yoshida, Michihiro; Suzuki, Satoshi*; Sukegawa, Yasuhiro*; Miyo, Hiroaki

JNC TN8440 2000-021, 180 Pages, 2000/10

JNC-TN8440-2000-021.pdf:42.37MB

At outside waste storage pits, containers for storage of wastes corroded and were flooded, and it was confirmed on August 26, 1997. Confirmation of contamination of the pits outskirts, installation of sheets to prevent rainwater from flowing into the pits, drawing stay water were executed, promptly. Design and authorization works of the work house and waste treatment devices to take out wastes of the pits were executed too. After construction of the work house, taking out wastes of the pits started, and finished on April 10, 1998. Investigations of the inflow point of rainwater and leak of stay water were executed next. The results were reported to Science and Thechnology Agency (STA), adjoining authorities on December 21, 1998. After decontamination of the pits inner walls to background level of the radioactivity which included general concrete, control area was removed, and the pits were closed by concrete. Measures of closing of the pits were prepared from the middle of August, 1999, and dismantlement of unnecessaly instruments started. Decontamination of the pits started fiom the beginning of September, 1999. The above works finished on June 30, 2000. After decontamination of the pits, STA, adjoining authorities confirmed the circumstances. Work pouring concrete into the pits was executed three times (three levels), and finished on August 31, 2000. In addition to above, the amount of concrete poured into the pits was about 1,200 m$$^{3}$$. This report compiled the photographs of the works from confirmation of stay water at August, 1997 by finish of measures of closing of the pits at September, 2000.

JAEA Reports

Measures of closing report of outside waste storage pits

; Ishibashi, Yuzo; Yoshida, Michihiro; Miyo, Hiroaki; Sukegawa, Yasuhiro*; *; Suzuki, Satoshi*

JNC TN8440 2000-020, 500 Pages, 2000/10

JNC-TN8440-2000-020.pdf:25.91MB

At outside waste storage pits, containers for storage of wastes corroded and were flooded, and it was confirmed on August 26, 1997. Confirmation of contamination of the pits outskirts, installation of sheets to prevent rainwater from flowing into the pits, drawing stay water were executed, promptly. Design and authorization works of the work house and waste treatment devices to take out wastes of the pits were executed too. After construction of the work house, taking out wastes of the pits started, and finished on April 10, 1998. Investigations of the inflow point of rainwater and leak of stay water were executed next. The results were reported to Science and Thechnology Agency (STA), adjoining authorities on December 21, 1998. After decontamination of the pits inner walls to background level of the radioactivity which included general concrete, control area was removed, and the pits were closed by concrete. Measures of closing of the pits were prepared from the middle of August, 1999, and dismantlement of unnecessary instruments started. Decontamination of the pits started from the begining of September, 1999. The above works finished on June 30, 2000. After decontamination of the pits, STA, adjoining authorities confirmed the circumstances. Work pouring concrete into the pits was executed three times (three levels), and finished on August 31, 2000. In addition t0 above, the amount of concrete poured into the pits was about 1,200 m$$^{3}$$.

JAEA Reports

Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Yoshida, Hiroshi*; Nishi, Masataka

JAERI-Research 2000-044, 24 Pages, 2000/10

JAERI-Research-2000-044.pdf:0.97MB

no abstracts in English

Journal Articles

Effect of radiation temperatures for inactivation of Escherichia coli and related bacteria after $$gamma$$-irradiation

Nakauma, Makoto; Tada, Mikio*; Ito, Hitoshi*

Shokuhin Shosha, 35(1-2), p.35 - 39, 2000/09

no abstracts in English

JAEA Reports

Criticality safety evaluation in Tokai reprocessing plant

Shirai, Nobutoshi; ; ; Shirozu, Hidetomo; Sudo, Toshiyuki; Hayashi, Shinichiro;

JNC TN8410 2000-006, 116 Pages, 2000/04

JNC-TN8410-2000-006.pdf:2.77MB

Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 "Criticality safety of single unit" in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units.

JAEA Reports

None

Otagaki, Takao*; *

JNC TJ8420 2000-016, 427 Pages, 2000/03

JNC-TJ8420-2000-016.pdf:18.18MB

no abstracts in English

JAEA Reports

None

*; *; *

JNC TJ8420 2000-003, 99 Pages, 2000/03

JNC-TJ8420-2000-003.pdf:5.47MB

no abstracts in English

165 (Records 1-20 displayed on this page)